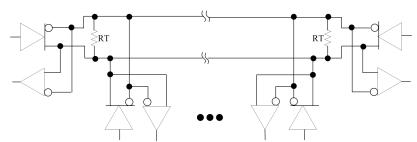
MORNSUN[®]

SCM3401A Half-duplex Transceiver

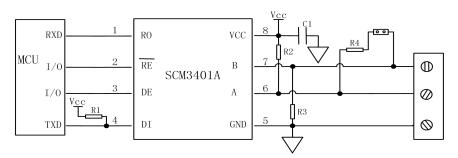
Features

- 5.0V single supply operation
- Baud Rate Up to 1Mbps
- 1/8 Unit Load—Up to 256 Nodes on a Bus
- Low Quiescent Power
 - 0.3mA Active Mode
 - 50nA Shutdown Mode
- Bus-Pin ESD Protection Up to 15 kV
- Driver short circuit protection

Applications


- Industrial Automation
- Building Automation
- Smart Electricity Meter
- Remote Signal Interaction, Transmission

Functional Description


SCM3401A is a half-duplex enhanced transceiver designed for RS–485 data bus networks. Powered by 5V supply, the SCM3401A is fully compliant with TIA/EIA-485A standard and is suitable for data transmission of up to 1 Mbps. Receivers have an exceptionally high input impedance, which places only 1/8 of the standard load on a shared bus and up to 256 transceivers.

The reliability design of A B pin is emphasized, including driver output over current protection and enhanced ESD design. The ESD protection level of A,B pin can be up to 15KV (Human Body Model).

Typical Application Circuit

Typical Circuit 1: Half-Duplex Network

Typical Circuit: 2: Application Diagram

MORNSUN®

MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO., LTD.

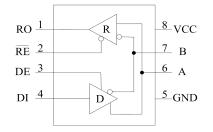
2019.11 - A/1 Page 1 of 12

MORNSUN Guangzhou Science & Technology Co., Ltd. reserves the copyright and right of final interpretation

Mechanical package: SOP-8 (see "Ordering information" for details).

Package

Contents


Feature and Package1
Applications1
Functional Description
Typical Application Circuit
Pin Connection
Inner Block Diagram
Function Table
Pin Description
Absolute Maximum Rating
Recommended Operatinging Conditions

Pin Connection

1	RO	VCC	8
2	RE	В	7
3	DE	А	6
4	DI	GND	5

Electrical Characteristics.3Transmission Characteristic.4Typical Performance Curves.4Test Circuits.6Detailed Description.9Expansion output design.9Suggestions for Power Supply.9Order Information.10Package Information.10Tape & Reel Information.11

Internal Block Diagram

Function table

	Driver				Driver							Receiver	
Input Outputs		Input Outputs					Input		Output				
RE	DE	DI	А	В		RE	DE	A-B	RO				
X	Н	Н	Н	L		L	Х	≥-10mV	Н				
X	Н	L	L	Н		L	Х	≤-200mV	L				
L	L	Х	Z	Z		L	Х	Open/Short	Н				
Н	L	Х	Z (SHUTDOWN)			Н	Н	Х	Z				
· · · ·					Н	L	Х	Z (SHUTDOWN)					

Pin descriptions

Pin Number	Pin Name	Pin Functions
1	RO	Receiver Output. When \overline{RE} is low and if $(A - B) \ge -10$ mV, RO is high. If $(A - B) \le -200$ mV, RO is low.
2	RE	$\begin{array}{c c} \hline Receiver \mbox{ Output Enable. When \overline{RE} is low, RO is enabled. When \overline{RE} is high, RO is high impedance. Drive \overline{RE} high and DE low to enter shutdown mode. } \end{array}$
3	DE	Driver Output Enable. When DE is high, outputs are enabled. When DE is low, outputs are high impedance. Drive DE low and $\overline{\text{RE}}$ high to enter shutdown mode.
4	DI	Driver Input.
5	GND	Ground
6	A	Non-Inverting Driver Output / Receiver input
7	В	Inverting Driver Output / Receiver input
8	VCC	Positive Supply VCC. Bypass to GND with a 0.1uF capacitor.

MORNSUN®

MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO., LTD.

2019.11 - A/1 Page 2 of 12

Absolute Maximum Ratings

General test conditions: Free-air, normal operating temperature range (unless otherwise specified).

PARAMETERS	UNIT
Supply voltage range, Vcc	-0.3V~+6V
Voltage range at A or B	-8V~+13V
Voltage range at DE、DI、 $\overline{\text{RE}}$ 、RO	-0.3V~+6V
Storage Temperature	-55℃~150℃
Lead Temperature (soldering, 10s)	300 °C

Important: Exposure to Absolute Maximum Rated conditions for an extended period may severely affect the device reliability, and stress levels exceeding the "Absolute Maximum Ratings" may result in permanent damage.

Recommended Operating Conditions

Recommended Operating Conditions			Nom.	Max.	Unit
Supply Voltage, V _{VCC}			5	5.5	
Voltage at any bus termina	al (differential or common mode), V ₁	-7		12	
High-level input v	oltage (DI, DE, $\overline{\mathrm{RE}}$) , V _{IH}	2		VCC	v
Low-level input v	Low-level input voltage (DI, DE, $\overline{\mathrm{RE}}$) , V _{IL}			0.8	
Quita ut quirrant	Driver	-60		60	- mA
Output current	Receiver	-8		8	
Differential load resistance		54	60		Ω
Sig			1000	Kbps	
Operating ambient temperature, T _A in free–air		-40		85	°C
Operating ju	nction temperature, TJ	-40		125	°C

Electrical Characteristics

General test conditions and V_VCc= 5V, Ta = 25 $^\circ\!\!\mathbb{C}$ (unless otherwise specified).

	PARAMET	TERS	CONDIT	IONS	Min.	Nom.	Max.	Unit
Digital Input S	Signals: DI, DE,	RE						•
Logic input thresholds		High, V _{IH}		2				
	Logic input th	resnoids	Low,	VIL			0.8	- V
Driver					1			
Dif	ferential Driver	Output (Vod)	No Lo	ad			Vvcc	V
Differential Driver Output (1)		RL=54Ω, F	igure 16	1.5	2.0		- v	
Differential Driver Output (2)		V _{CM} = -7 ~ 12\	/, Figure 17	1.5		V _{VCC}		
Driver	Common Mode	e Output Voltage	Figure	e18	1		3	V
Change in Common Mode Output Voltage		Figure	e19			±0.2	V	
Driver Short Circuit Current Limit		-7V≤V _{OUT} ≤12V	′, Figure22		±110	±250	mA	
Receiver								
F	Receiver Input I	Resistance	-7V≤V _{OU}	_⊺ ≤12V	96			ΚΩ
	Innut Current (DE=0, RE=0,	V _{OUT} =12V		190	250	uA
	Input Current (A, B pins)	V_{VCC} =0 or 5.5V	V _{OUT} = -7V		-110	-200	uA
Change in m	nagnitude of dif	ferential output voltage	$I_{\rm O} = \pm 8$	mA	-200		-10	mV
	Receiver Input	Hysteresis				30		mV
Dessition Or		V _{OH} , Figure 23	Ι _{ουτ} = -5mA , Ν	V _{ID} = 200mV	Vvcc-1.5			- v
Receiver Ot	itput Voltage	V _{OL} , Figure 24	Ι _{ουτ} = 5mA,V	′ _{ID} = -200mV			0.4	v
Supply and P	rotection							
	Driver a	nd receiver enabled	$DE = V_{VCC}$, \overline{RE}	= 0 , No load		250	900	uA
	Driver ena	bled, receiver disabled	$DE = V_{VCC}$, $\overline{RE} = V_{VCC}$, No load			250	900	uA
lvcc	Receiver e	nabled, driver disabled	$DE = V_{VCC}$, $\overline{RE} = 0$, No load			220	600	uA
	Driver a	nd receiver disabled	$DE = 0$, $\overline{RE} = V$	vcc , No load		0.05	1	uA
	11	man Dady Madal	A, B and	GND		±15		KV
ESD	Hur	man Body Model	Other	pins		±4		KV
EFT		EC61000-4-4	A, B and	GND		±1		KV

MORNSUN®

MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO.,LTD.

2019.11 - A/1 Page 3 of 12

Transmission Characteristics

General test conditions and V_{VCC} = 5V, Ta = 25 $^\circ C$ (unless otherwise specified).

PARAMETERS	CONDITIONS	Min.	Nom.	Max.	Unit
Driver					
Data Signaling Rate	Duty Cycle 40% ~ 60%			1000	Kbps
Driver Propagation Delay (T_{PHL} , T_{PLH})				100	ns
Driver Output Rise/Fall Time ($T_{R_{,}}T_{F}$)	$R_L = 54\Omega, C_L = 50pF$, Figure 19			100	ns
Driver Differential Skew ($ T_{PHL} - T_{PLH} $)		-50		50	ns
Driver Enable to Output High (T_{PZH})			100	500	ns
Driver Enable to Output Low (T_{PZL})			100	500	ns
Driver Disable from Output High (T_{PHZ})	$-$ R _L =110 Ω , $\overline{\text{RE}}$ = 0, Figure 20, Figure 21		50	100	ns
Driver Disable from Output Low (T_{PLZ})			50	100	ns
Shutdown to Driver Output Valid (T _{PZH(SHDN)} , T _{PZL(SHDN})	R_L =110 Ω , $\overline{\mathrm{RE}}$ =V _{VCC} , Figure 20		50	100	ns
Receiver					
Receiver Propagation Delay ($T_{PLH, TPHL}$)			50	100	ns
Receiver Differential Skew ($ T_{PLH} - T_{PHL} $)	- C _L = 15pF, Figure 22	-50		50	ns
Receiver Output Rise/Fall Time ($T_{R_{}}T_{F}$)	C_L = 15pF, V_{DI} =-1.5V~1.5V, Figure 22			15	ns
Receiver Enable to Output High (T_{PZH})			20	50	ns
Receiver Enable to Output Low (TPZL)			20	50	ns
Receiver Disable from Output High (T_{PHZ})	- C _L = 15pF, Figure 23, Figure 24		20	50	ns
Receiver Disable from Output Low (T_{PLZ})			30	50	ns
Shutdown to Receiver Output Valid			500	1000	ns
(T _{PZH(SHDN)} ,T _{PZL(SHDN)})	C_{L} = 15pF, DE = 0V, Figure 25		500		115
Time to Shutdown		50		600	ns

Typical Performance Curves

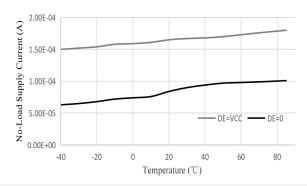


Figure 1 No-Load Supply Current vs. Temperature

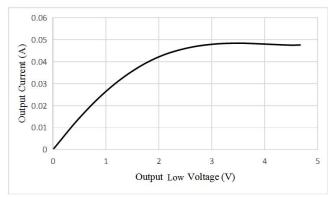


Figure 3 Output Current vs. Receiver Output Low Voltage

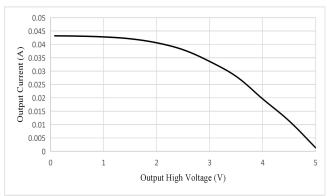


Figure 2 Output Current vs. Receiver Output High Voltage

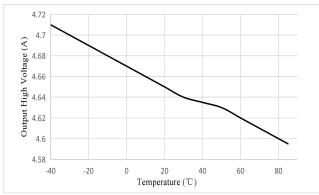
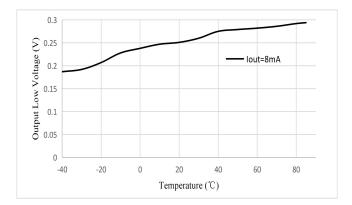



Figure 4 Receiver Output High Voltage vs. Temperature

MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO., LTD.

2019.11 - A/1 Page 4 of 12

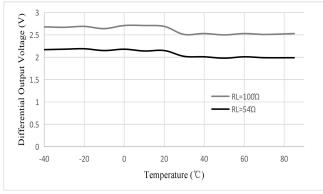
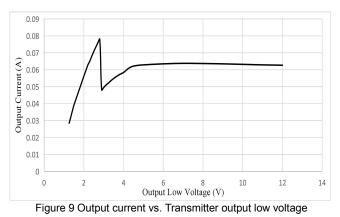



Figure 7 Driver Differential Output Voltage vs Temperature

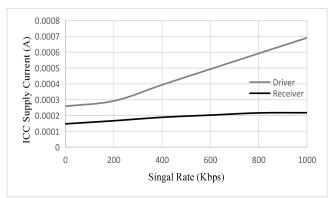


Figure 11 RMS Supply Current vs. Signaling Rate

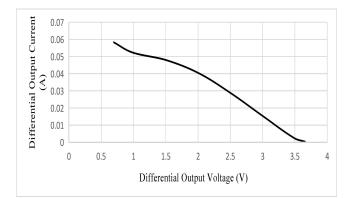


Figure 6 Driver differential output current vs. Differential output voltage

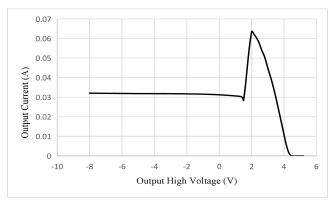
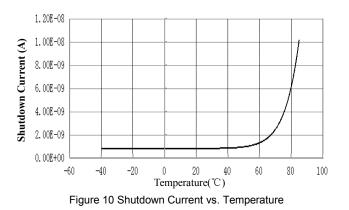



Figure 8 Output current vs. Transmitter output high voltage

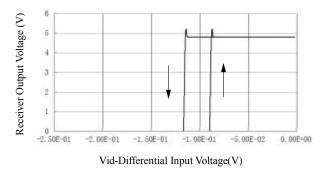


Figure 12 Receiver output voltage vs. Differential input voltage

MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO., LTD.

2019.11 - A/1 Page 5 of 12

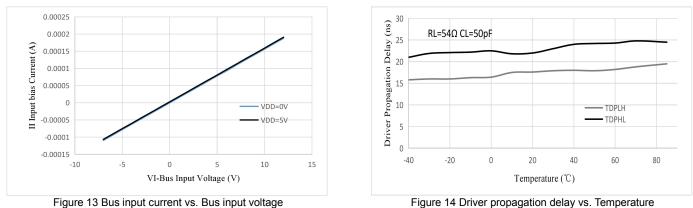


Figure 13 Bus input current vs. Bus input voltage

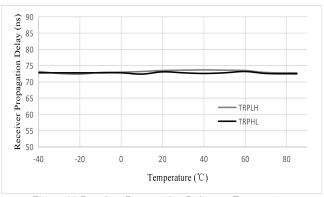


Figure 15 Receiver Propagation Delay vs. Temperature

Test Circuits

NOTE: Load test capacitance includes probe and test fixture stray capacitance, unless otherwise specified. Signal generator with following characteristics: Rise and fall time < 6ns, pulse rate 100kHz, 50% duty cycle, ZO = 50Ω (unless otherwise specified).

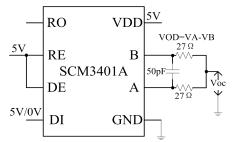
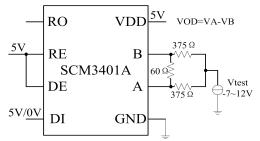
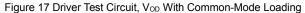




Figure 16 Driver Test Circuit, VoD and Voc Without Common-Mode Loading

MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO., LTD.

2019.11 - A/1 Page 6 of 12

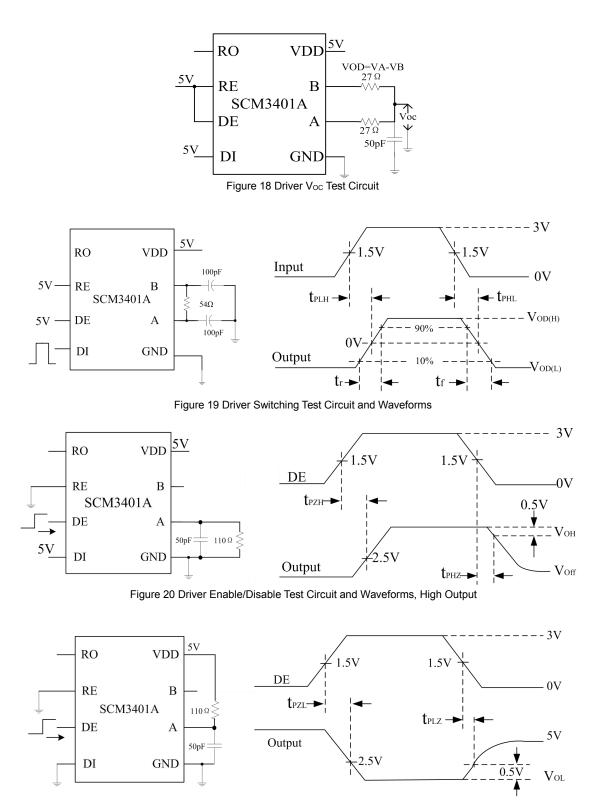
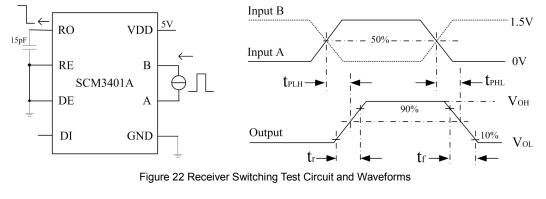



Figure 21 Driver Enable/Disable Test Circuit and Waveforms, Low Output

MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO., LTD.

2019.11 - A/1 Page 7 of 12

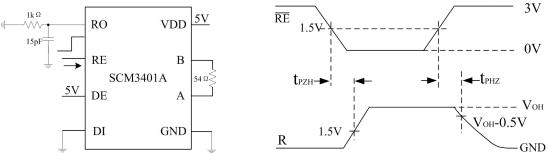


Figure 23 Receiver Enable/Disable Test Circuit and Waveforms, Data Output High

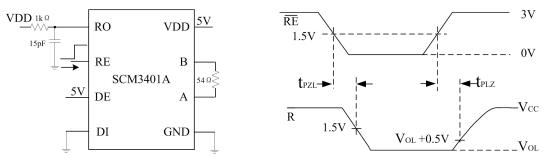


Figure 24 Receiver Enable/Disable Test Circuit and Waveforms, Data Output Low

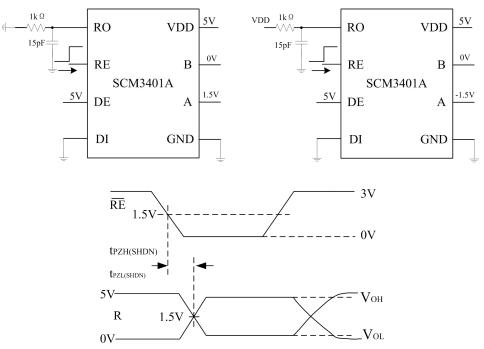


Figure 25 Receiver Enable from Shutdown Test Circuit and Waveforms

MORNSUN®

MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO., LTD.

2019.11 - A/1 Page 8 of 12

Detailed Description

The SCM3401A series are advanced RS-485 transceivers. They each contain one driver and one receiver. These devices feature a fail-safe circuitry that guarantees a high receiver output voltage when the receiver inputs are either open, shorted or when they are connected to a terminated transmission line with all drivers disabled. These devices operate with a single 5.0V supply. Drivers limit the output current by over current protection, to avoid the damage to the transceivers.

Receiver input filter

The SCM3401A receivers have an integrated input filter which enhances noise immunity of the high-speed differential signals. The receiver propagation delay increases due to this filtering.

Bus fail-safe

Ordinary RS485 bus receivers will be in an indeterminate state when -200mV< A - B <-10mV. This situation can occur whenever the data bus is not being actively driven. The advanced Fail-safe feature of the SCM3401A guarantees a high receiver output voltage if the receiver's differential inputs are either shorted, open circuit, or if they are connected to a termination resistor.

The SCM3401A receiver thresholds are very precise, and the offset between threshold voltage and ground has a margin of at least 10mV. This guarantees that the receiver output is a high voltage even the input differential is zero volts, thus maintaining compliance with the EIA/TIA-485 standard.

Load abilities on the bus (256 nodes)

The standard receiver input impedance of RS-485 is $12k\Omega$ (1 unit load). A standard RS485 driver can drive at least 32 unit loads. The SCM3401A transceiver is design to 1/8th of the standard unit load and the input impedance is higher than 96k Ω , hence allowing up to 256 unit loads, in other words eight times as many. The SCM3401A can work combined with other standard RS485 that use the smaller amount of unit loads.

Low power shunt down mode

A low-power shutdown mode is triggered by simultaneously bringing \overline{RE} high and DE low. During shutdown mode the device supply current is 50nA typical. DE and \overline{RE} can be directly connected and controlled by the same I/O. The devices are guaranteed not to enter shutdown mode if \overline{RE} is high and DE is low for less than 50ns. If this state is maintain for at least 600ns, the device will shut down reliably.

Driver output protection

The device prevents excessive output current caused by fault conditions or driver short circuit. A driver current limit on the output stage provides and ensures immediate protection against short circuits over the entire common mode voltage range.

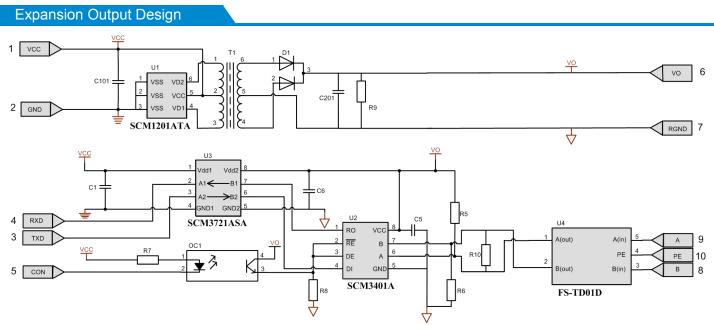


Fig. 26 Schematic diagram of isolation application circuit for UART to RS485 signal

Suggestions for Power Supply

If the input power is a few inches from the SCM3401A, as much as possible, connect a 0.1μ F bypass capacitor to the VCC pin and a 10μ F capacitor near the center tap pin of the transformer.

MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO., LTD.

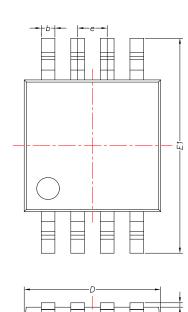
2019.11 - A/1 Page 9 of 12

Part number	Package	Number of pins	Product Marking	Tape & Reel
SCM3401ASA	SOP	8	SCM 3401ASA YM	3K/REEL

Product marking and date code

SCM3401XYZ:

(1) SCM3401 = Product designation.

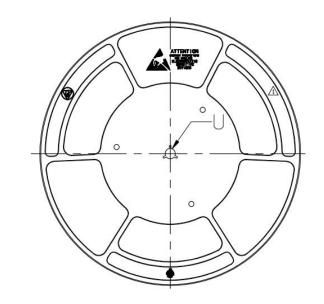

(2) X = Version code information (A-Z).

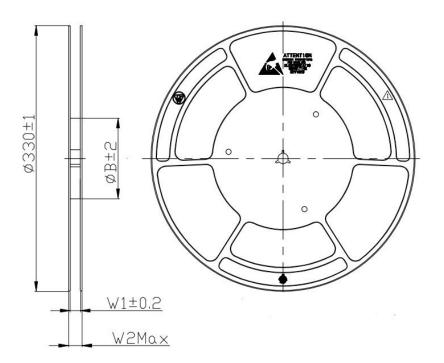
(3) Y = Packaging definition code; S for SOP package,

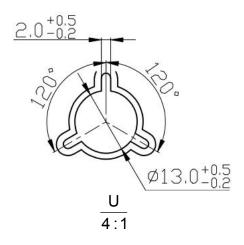
(4) Z = Operating temperature range (C = 0°C to +70°C, I =-40°C to +85°C, A =-40°C to +125°C, M = -55°C to +125°C).

(5) YM = Date code for product traceability; Y = code for production year; M = code for production month.

Package Information


		SOP8			
Symbol	Dimensions	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.800	5.000	0.189	0.197	
е	e 1.270 (BSC) 0.050 (BSC)		BSC)		
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
L	0.400	1.270	0.016	0.031	
θ	0°	8°	0°	8°	


MORNSUN®


MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO.,LTD.

2019.11 - A/1 Page 10 of 12

MORNSUN®

MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO.,LTD.

2019.11 - A/1 Page 11 of 12

Basic Disk Dimensions (mm)							
Package Type	Package Type Load Band Width B W1 W2Max						
SOP8 12 180 12.4 18.4							

Technical requirement :

- 1. Color : Blue (Reference color number :
 - PANTONE DS 196-1 C ; C100 M70 Y0 K0 PANTONE DS 197-1 C; C100 M70 Y0 K10 PANTONE DS 205-1 C; C100 M60 Y0 K20 PANTONE DS 205-2 C; C85 M50 Y0 K20 PANTONE DS 206-2 C; C85 M50 Y0 K35 PANTONE DS 219-1 C; C90 M50 Y5 K15)
- 2. Dimensions and tolerances according to ANSI/EIA-481-C-2003;
- 3. Disk surface good finish, no warping deformation ;
- 4. External packing in good condition, no damage or pollution;

Mornsun Guangzhou Science & Technology Co., Ltd.

No. 5, Kehui St. 1, Kehui Development Center, Science Ave., Guangzhou Science City, huangpu District, Guangzhou, P. R. China Tel: 86-20-38601850 Fax: 86-20-38601272

Email: sales@mornsun.cn

www.mornsun-power.com

MORNSUN®

MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO., LTD.

2019.11 - A/1 Page 12 of 12