

150W isolated DC-DC converter Wide input and regulated single output

Patent Protection RoHS

FEATURES

- Wide input voltage range: 36-75 VDC
- High efficiency up to 93.5%
- I/O isolation test voltage 2250 VDC
- Operating ambient temperature range: -40°C to +100°C
- Input under-voltage protection, output short circuit, over-current, over-voltage protection, over-temperature protection
- Industry standard package: 1/8 brick

VCF48_EBO-150W(F)R3-N series is a high-performance product specifically designed for a variety of communication power supply field. The DC-DC converters feature 150W output power with an wide 2:1 input voltage and feature efficiencies of up to 93.5%, input to output isolation is tested with 2250VDC and the converters safety operate ambient temperature of -40 $^{\circ}$ C to +100 $^{\circ}$ C, input under-voltage protection, output over-voltage, over-current, short-circuit protection, over-temperature protection. They are ideally and widely used in applications such as industrial control, electric power, instruments and communications.

Selection Guide									
Certification		Ctrl Logic®	Input Voltage (VDC)		Output		Full Load	Max.	
	Part No. [®]		Nominal (Range)	Max.®	Voltage (VDC)	Current (A) Max./Min.	Efficiency®(%) Min./Typ.	Capacitive Load(µF)	
	VCF4805EBO-150W(F)R3-N	N 48 (36-75)			05	30.0/0	90.5/92.5	10000	
_	VCF4812EBO-150W(F)R3-N		48 (36-75)			75	12	12.5/0	91.5/93.5
	VCF4824EBO-150W(F)R3-N					(33 / 0)		24	6.25/0

Notes:

⁽⁴⁾ Efficiency is measured at nominal input voltage and rated output load.

Input Specifications			_		
ltem	Operating Conditions	Min.	Тур.	Max.	Unit
Input Current (full load / no-load)	Nominal input voltage		3434/20	3600/30	mA
Reflected Ripple Current	Normal input voltage		30		ША
Surge Voltage (1sec. max.)		-0.7	-	80	
Start-up Voltage			-	36	VDC
Input Under-voltage Protection		26	29		
Start-up Time	Nominal input voltage & constant resistance load			100	ms
Input Filter	out Filter Pi filter				
Hot Plug		Unavailable			
Input Reverse Polarity Protection	rotection Unavailable				
	Module turn-on	Ctrl pin pulled low to GND (0-1.2VDC)			
Ctrl ®	Module turn-off	Ctrl pin open or pulled high (TTL 3.5-12)		·12VDC)	
	Input current when switched off	_	3	10	mA
Ctrl Start-up Delay Time			30	50	ms

①Use "F" suffix for heat sink mounting. We recommend to choose modules with a heat sink for enhanced heat dissipation and applications with extreme temperature requirements;

^{2&}quot;N" means negative logic;

^{© 14} means regained legic,

© Exceeding the maximum input voltage may cause permanent damage;

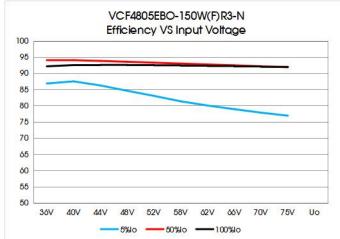
Item	Operating Conditions		Min.	Тур.	Max.	Unit
Voltage Accuracy	0%-100% load			±1	±3	
Linear Regulation	Input voltage variation from low to	high at full load		±0.2	±0.5	%
Load Regulation	5%-100% load			±0.5	±0.75	
Transient Recovery Time	25% load step change, nominal in di/dt=2.5A/µs		200	500	μs	
Transient Response Deviation	25% load step change, di/dt=2.5A/µs	05V	-	±6	±10	%
indisient Response Deviation		other		±3	±5	
Temperature Coefficient	Full load		-	-	±0.03	%/℃
Diamia 9 Naisa®	20MHz bandwidth, nominal input voltage, 5%-100% load	05V, 12V		120	150	mV p-p
Ripple & Noise [®]		24V		125		
Trim			90		110	0/
Sense					105	%
Over-temperature Protection ²	Product surface max. temperature	Э		135		$^{\circ}$
Over-voltage Protection		110	125	160	%Vo	
Over-current Protection	Input voltage range		110	140	190	%lo
Short-circuit Protection			Continu	ous, self-reco	overv. time≤3	seconds

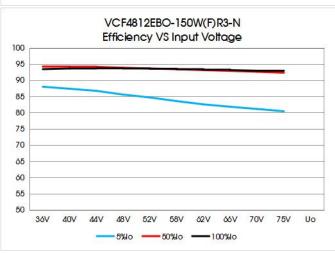
Note:

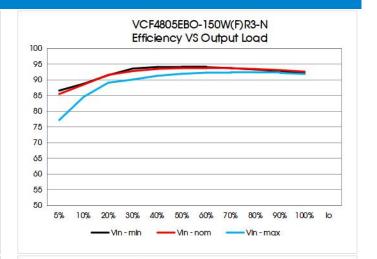
②The temperature of over-temperature protection of products with heat sink is subject to the internal device temperature.

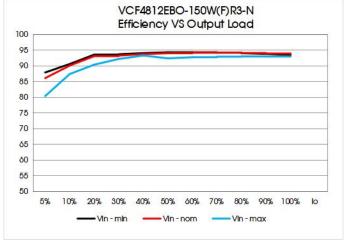
Item	Operating Conditions	Min.	Тур.	Max.	Unit
Isolation	Input-output Electric Strength Test for 1 minute with a leakage current of 1mA max.	2250			VDC
Insulation Resistance	Input-output resistance at 500VDC	1000			M Ω
Isolation Capacitance	Input-output capacitance at 100KHz/0.1V	-	1000		рF
Operating Temperature	See Fig. 1	-40		+100	°C
Storage Temperature		-55		+125	
Storage Humidity	Non-condensing	5		95	%RH
Die Oaldade e Dadden a	Wave soldering,10 seconds			+260	
Pin Soldering Resistance Temperature	Soldering spot is 1.5mm away from case for 10 seconds	-		+300	℃
Shock and Vibration Test		10-55	5Hz, 10G, 30M	lin. along X, Y	and Z
Switching Frequency [®]	PWM mode	-	300		kHz
Altifude		Atı		≤4000m, essure: 60~11	0КРа
MTBF	Telcordia SR-332@25°C	2000			k hours

 $Note: \\ \textcircled{0} \\ \textbf{Switching frequency is measured at full load. The module reduces the switching frequency for light load (below 50\%) efficiency improvement.}$

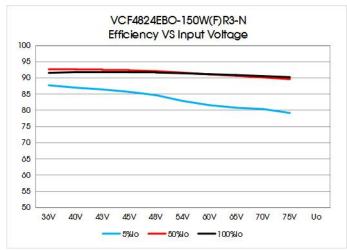

Mechanical Specifications					
Dimensions	VCF48_EBO-150WR3-N	58.42 x 22.86 x 9.69mm			
Dimensions	VCF48_EBO-150WFR3-N	58.42 x 22.86 x 12.7mm			
\\\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	VCF48_EBO-150WR3-N	27.0g (Typ.)			
Weight	VCF48_EBO-150WFR3-N	35.9g (Typ.)			
Cooling Method	Natural convection or forced air convection				

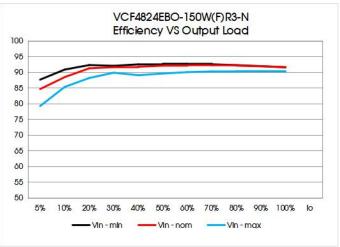

①The "parallel cable" method is used for Ripple and Noise test, please refer to DC-DC Converter Application Notes for specific information. Ripple & Noise at <5% load is 5% Vo max.

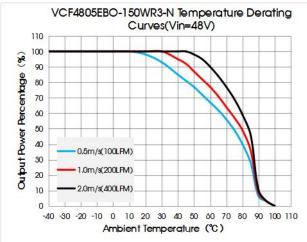


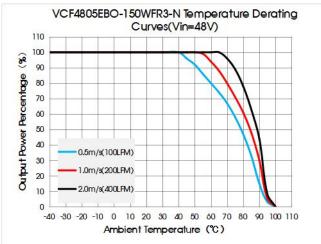

Electromag	gnetic Compat	ibility (EMC)	
Emissions	CE	CISPR32/EN55032 CLASS A (see Fig. 6-1 for recommended circuit) /CLASS B (see Fig. 6-2 for recommended circuit)	
RF CISPR32		CISPR32/EN55032 CLASS A (see Fig. 6-1 for recommended circuit) /CLASS B (see Fig. 6-2 for recommended circuit)	
	ESD	IEC/EN61000-4-2 Contact ±6KV	perf. Criteria B
	RS	IEC/EN61000-4-3 10V/m (see Fig. 6-1, Fig. 6-2 for recommended circuit)	perf. Criteria A
Immunity	EFT	IEC/EN61000-4-4 100KHz ±2KV (see Fig. 6-1, Fig. 6-2 for recommended circuit)	perf. Criteria B
ii ii ii ii ii y	Surge	IEC/EN61000-4-5 line to line ±2KV (see Fig. 6-1, Fig. 6-2 for recommended circuit)	perf. Criteria B
	CS	IEC/EN61000-4-6 3 Vr.m.s (see Fig. 6-1, Fig. 6-2 for recommended circuit)	perf. Criteria A

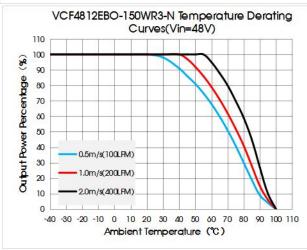
Typical Characteristic Curve

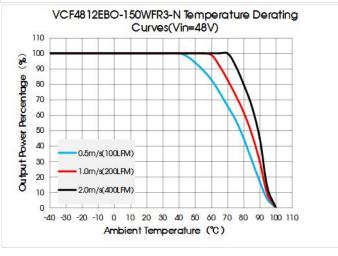


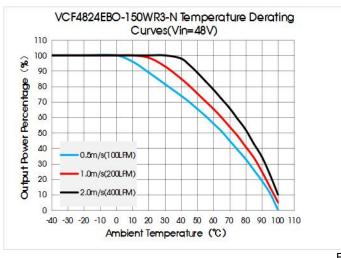












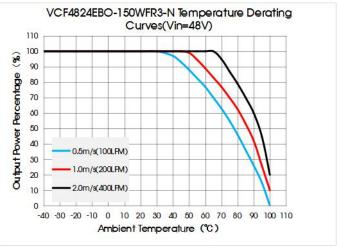


Fig. 1

Remote Sense Application

1. Remote Sense Connection if not used

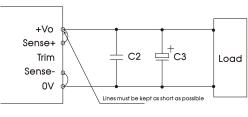


Fig. 2

Notes:

- (1) If the sense function is not used for remote regulation the user must connect the +Sense to +Vo and -Sense to 0V at the DC-DC converter pins and will compensate for voltage drop across pins only.
- (2) The connections between sense lines and their respective power lines must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.

2. Remote Sense Connection used for Compensation

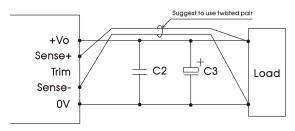
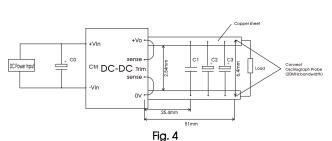


Fig. 3

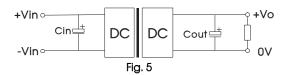
Notes:


- (1) Using remote sense with long wires may cause unstable output, please contact technical support if long wires must be used.
- (2) PCB-tracks or cables/wires for Remote Sense must be kept as short as possible. Twisted pair or shielded wires are suggested for remote compensation and must be kept as short as possible.
- (3) We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.
- (4) Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical support or factory for further advice of sense operation.

Design Reference

1. Ripple & Noise

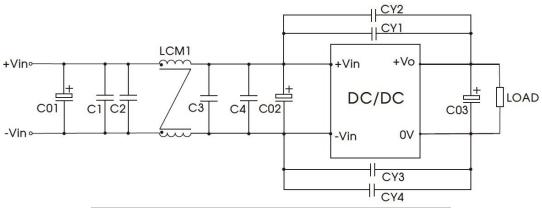
All the DC-DC converters of this series are tested before delivery using the recommended circuit shown in Fig. 4.

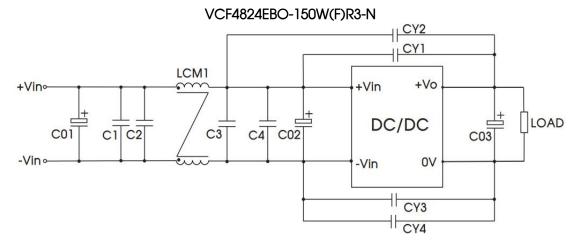

Capacitors Value Output Voltage	C0	C1	C2	СЗ
05/12VDC	100µF/	/ 1.5(50)/	10.5/50/	330µF/63V
24VDC	100V	1μF/50V	10µF/50V	470µF/35V

2. Typical application

All DC-DC converters of this series are tested before delivery using the recommended circuit shown in Fig. 5.

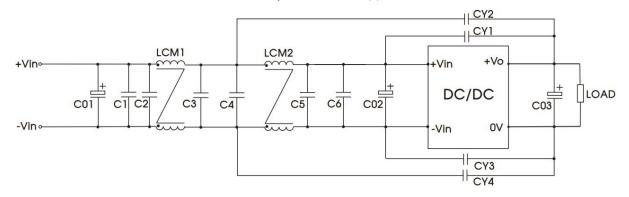
We recommended using Mornsun's EMC circuit, otherwise please ensure that at least a 100µF electrolytic capacitors is connected at the input in order to ensure adequate voltage surge suppression and protection.


Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.

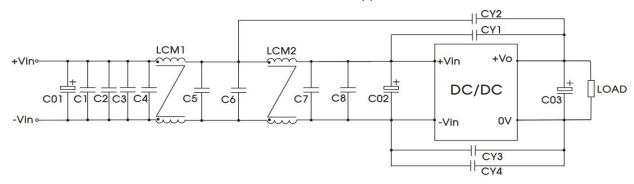

Vout (VDC)	Cin	Cout
05/12	100Ε/100\/	330uF/63V
24	100uF/100V	470uF/35V

3. EMC compliance recommended circuit

VCF4805/12EBO-150W(F)R3-N

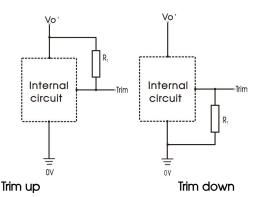

C01	470uF/100V (electrolytic capacitor)
C02	100uF/100V (electrolytic capacitor)
C03	330uF/63V (electrolytic capacitor)
C1, C2, C3, C4	4.7uF/100V
CY1, CY2, CY3, CY4	2.2nF/2KV
LCM1	2mH, recommended to use MORNSUN P/N: FL2D-A2-202(C)

C01	470uF/100V (electrolytic capacitor)
C02	100uF/100V (electrolytic capacitor)
C03	330uF/63V (electrolytic capacitor)
C1, C2, C3, C4	4.7uF/100V
CY1, CY2, CY3, CY4	2.2nF/2KV
LCM1	2.0mH, recommended to use MORNSUN P/N: FL2D-A2-202(C)


Fig. 6-1

VCF4805/12EBO-150W(F)R3-N

C01	470uF/100V (electrolytic capacitor)
C02	100uF/100V (electrolytic capacitor)
C03	330uF/63V (electrolytic capacitor)
C1, C2, C3, C4, C5, C6	4.7uF/100V
CY1, CY2, CY3, CY4	4.7nF/1.5KV
LCM1, LCM2	2.0mH, recommended to use MORNSUN P/N: FL2D-A2-202(C)


VCF4824EBO-150W(F)R3-N

C01	470uF/100V (electrolytic capacitor)
C02	100uF/100V (electrolytic capacitor)
C03	330uF/63V (electrolytic capacitor)
C1, C2, C3, C4, C5, C6, C7, C8	4.7uF/100V
CY1, CY2, CY3, CY4	4.7nF/1.5KV
LCM1, LCM2	2.0mH, recommended to use MORNSUN P/N: FL2D-A2-202(C)

Fig. 6-2

4. Trim function for output voltage adjustment (open if unused)

TRIM resistor connection (dashed line shows internal resistor network)

Calculating Trim resistor values:

 $R_T = \left(\frac{511}{\Lambda^{9/6}}\right) - 10.22(k\Omega)$

Trim up

$$R_T = \left(\frac{5.11 V_{nom} (100 + \Delta\%)}{1.225 \Delta\%} - \frac{511}{\Delta\%} - 10.22\right) (k\Omega)$$

Trim down

RT = Trim Resistor value

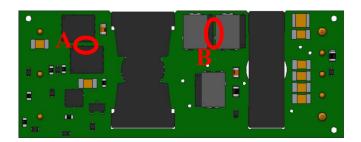
$$\Delta\% = \left| \frac{V_{nom} - V_{out}}{V_{nom}} \right| \times 100$$

 V_{nom} = nominal output voltage

 V_{out} = desired output voltage

When the output voltage is 12V, the up-regulated voltage is +10%, that is, the output voltage set to 13.2V:

$$\Delta\% = \left| \frac{12 - 13.2}{12} \right| *100 = 10 \qquad \qquad R_T = \frac{5.11 *12 * (100 + 10)}{1.225 *10} - \frac{511}{10} - 10.22 = 489 K\Omega$$

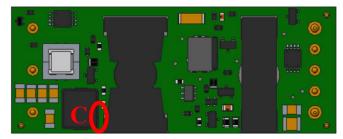
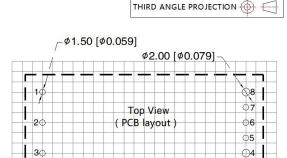
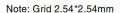

When the output voltage is 12V, the down-regulated voltage is -10%, that is, the output voltage set to 10.8V:

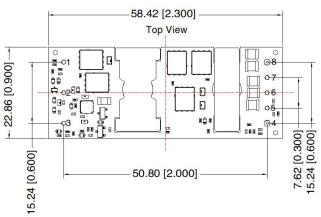
$$\Delta\% = \left| \frac{12 - 10.8}{12} \right| * 100 = 10$$

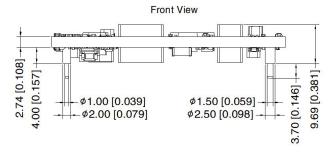
$$R_{T} = \frac{511}{10} - 10.22 = 40.88 K\Omega$$

5. Recommended solution for thermal testing

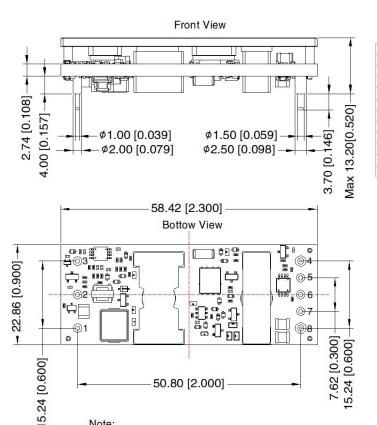
During the application process, the thermal design of the product can be evaluated in combination with the temperature derating curve of the product, or it can be determined by testing the temperature at the hot test point in Fig. 7. It is an safe operating area for VCF4805EBO-150WR3-N if the temperature lower than 130°C at point B. It is an safe operating area for VCF4812EBO-150WR3-N, VCF4824EBO-150W(F)R3-N if the temperature lower than 130°C at point A. It is an safe operating area for VCF4805/12EBO-150WFR3-N if the temperature lower than 130°C at point C.

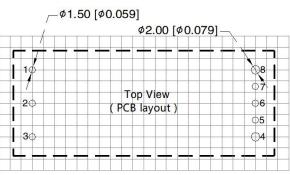





Fig. 7


- 6. The products do not support parallel connection of their output
- 7. For additional information please refer to DC-DC converter application notes on www.mornsun-power.com

VCF48_EBO-150WR3-N Dimensions and Recommended Layout


Pin-Out	
Pin	Mark
1	+Vin
2	Ctrl
3	–Vin
4	0V
5	-Sense
6	Trim
7	+Sense
8	+Vo


Note: Unit: mm[inch] Pin section tolerances: $\pm 0.10[\pm 0.004]$ General tolerances: $\pm 0.50[\pm 0.020]$ PIN1/2/3/5/6/7: $\phi 1.0$ mm; PIN4/8: $\phi 1.5$ mm The layout of the device is for reference only, please refer to the actual product

VCF48_EBO-150WFR3-N Dimensions and Recommended Layout

Note: Grid 2.54*2.54mm

Pin-Out	
Pin	Function
1	+Vin
2	Ctrl
3	–Vin
4	OV
5	-Sense
6	Trim
7	+Sense
8	+Vo

Unit: mm[inch]

Note:

Pin section tolerances: $\pm 0.10[\pm 0.004]$ General tolerances: ± 0.50[± 0.020] PIN1/2/3/5/6/7: \$ 1.0mm; PIN4/8: \$ 1.5mm

The layout of the device is for reference only, please

refer to the actual product

Notes:

- For additional information on Product Packaging please refer to www.mornsun-power.com. Packaging bag number: 58210119(VCF48_EBO-150WR3-N), 58210152(VCF48_EBO-150WFR3-N);
- We suggest to use module at load of over 5%, if not, the ripple of the product may exceeds the specification, but does not affect the reliability of the product;
- The maximum capacitive load offered were tested at input voltage range and full load;
- Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25℃, humidity<75%RH with nominal input voltage and rated output load;
- All index testing methods in this datasheet are based on company corporate standards;
- We can provide product customization service, please contact our technicians directly for specific information;
- Products are related to laws and regulations: see "Features" and "EMC"; 7.
- Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.

Mornsun Guangzhou Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui Development Center, Science Ave., Guangzhou Science City, Huangpu District, Guangzhou, P. R. China Fax: 86-20-38601272 Tel: 86-20-38601850 E-mail: info@mornsun.cn www.mornsun-power.com

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.