Non-isolated Regulated Single Output 12A POL power converters ## **FEATURES** - High efficiency up to 95% - Wide input voltage range: 4.5VDC-14.4VDC - Adjustable output voltage: 0.6VDC-5.5VDC - Operating ambient temperature range: - -40°C to +85°C - Output short-circuit protection - Fast transient response - SENSE, TRIM, PGOOD function - Compact SMD package: 12.20 x 12.20 x 8.70mm K12MT-12A series is a high-efficiency POL switching regulator, it features load capacity of 12A, the output voltage is precisely adjustable from 0.6V-5.5V, high conversion efficiency, fast transient response, and output short circuit protection. It is widely used in communications, computer network industries, and power distributed architecture, workstations, servers, LANs/WANs, providing high current with fast transient response for high-speed chips of FPGA, DSP and ASIC. | Selection Guide | | | | | | | | | | | |-----------------|-----------------------|----------------------------|------------------|-------------------------------|--------------------------|----------------------------|------------|--|--|--| | Certification | Part No. [®] | Input Voltage (VDC) Output | | | Dutput | Full Load | Capacitive | | | | | | | Nominal
(Range) | Max [®] | Voltage [®]
(VDC) | Current (A)
Min./Max. | Efficiency(%)
Min./Typ. | Load (µF) | | | | | | K12MT-12A-P | 12 | 15 | 0.6-5.5 | 0/12 | 92/95 | 1000 | | | | | _ | K12MT-12A-N | (4.5-14.4) | 15 | 0.6-5.5 | 0/12 | 92/95 | 1000 | | | | Notes: ① "P" and "N" respectively indicate that the remote control pin (ON/OFF) is controlled by positive and negative logic; - 2 Exceeding the maximum input voltage may cause permanent damage; - (3) The default output voltage is 0.6VDC, which can be adjusted to 1.2VDC, 1.8VDC, 2.5VDC, 3.3VDC, 5VDC. See "Typical Application Circuit" for specific output voltage regulation; - ⊕ When Vo≥3.3VDC,please ensure the input/output voltage difference is greater than or equal to 2VDC; - ⑤ Unless otherwise specified, parameters in this table were measured under the 5VDC output voltage. | Input Specification | S | | | | | | | | | |-------------------------------------|------------------|------------------------------|--|--|--------------------|--------|--|--|--| | Item | Operating Cond | Operating Conditions | | | Max. | Unit | | | | | Input Current (full load / no-load) | Nominal input v | Nominal input voltage | | | | mA | | | | | Start-up Voltage [®] | | | _ | | 4.5 | VDC | | | | | Reverse Polarity at Input | | | Avoid | | | | | | | | Hot Plug | | | | | Unavailable | | | | | | Input Filter | | | | | Capacitance filter | | | | | | | | K12MT-12A-P (positive logic) | ON/OFF pin pulled high (3VDC ~ Vin) or open | | | | | | | | ON/OFF® | Module on | K12MT-12A-N (negative logic) | ON/OFF pin pulled low to GND (-0.2VDC~ 0.4VDC) or open | | | | | | | | | Module off | K12MT-12A-P (positive logic) | ON/OFF pin pulled low to GND (-0.2VDC ~ 0.3VDC) | | | | | | | | | WOOddle Off | K12MT-12A-N (negative logic) | ON/OFF pin pulled high (3VDC~ | | | ~ Vin) | | | | | | Input current wh | Input current when off | | | 1 | mA | | | | Note: ① When Vo=3.3VDC, the maximum start-up voltage is 5VDC. When Vo=5VDC, the maximum start-up voltage is 7VDC; - ② The ON/OFF pin voltage is referenced to GND; - 3 Unless otherwise specified, all indicators in the table are Vo=5VDC. | Item | Operating Conditions | | Min. | Тур. | Max. | Unit | | |------------------------------|---|--------------------------------------|------|------|-------|------|--| | Voltage Accuracy | Full load, Input voltage | TRIM resistor with 0.1% tolerance | | | ±1 | % | | | vollage Accuracy | range | TRIM resistor with 1% tolerance | | | ±3 | /6 | | | Linear Regulation | Full load, Input voltage | Vo≥2.5VDC | | | ±30 | mV | | | Linear Regulation | range | Vo<2.5VDC | | | ±10 | | | | Load Regulation | Nominal input voltage, 109 | Nominal input voltage, 10%-100% load | | | | | | | Ripple & Noise* | 20MHz bandwidth, nomina | | 50 | 100 | mVp-p | | | | Trim | | | 0.6 | | 5.5 | VDC | | | Sense function | | - | | 0.5 | V | | | | | | Vo=0.6VDC
Co=3*47µF//4*330µF | | ±50 | | | | | | Nominal input voltage,
50%-100%-50% load,
Tip and barrel method | Vo=1.2VDC
Co=3*47µF//4*330µF | | ±50 | | | | | Transient Response Deviation | | Vo=1.8VDC
Co=3*47µF//4*330µF | | ±100 | | mV | | | iransiem kesponse beviation | | Vo=2.5VDC
Co=3*47µF//4*330µF | | ±100 | | IIIV | | | | | Vo=3.3VDC
Co=3*47µF//4*330µF | | ±100 | | | | | | | Vo=5VDC
Co=3*47µF//4*330µF | | ±100 | | | | | Short-circuit Protection | Nominal input voltage | Continuous, self-recovery | | | | | | | Temperature Coefficient | Full load | | ±0.2 | | %/℃ | | | Note: *① The test output of ripple and noise should be connected with 0.1µF // 22µF ceramic capacitor; Using typical application circuits in the design reference, the ripple can be further reduced to 30mV $[\]ensuremath{\textcircled{2}}$ Unless otherwise specified, all indicators in the table are Vo=5VDC. | General Specifications | | | | | | | | | | |------------------------------|----------------------------------|--|------------|------|---------|--|--|--|--| | Item | Operating Conditions | Min. | Тур. | Max. | Unit | | | | | | Operating Temperature | See Fig.1 | -40 | | +85 | °C | | | | | | Storage Temperature | | -55 | | +125 | | | | | | | Storage Humidity | Non-condensing | 5 | | 95 | %RH | | | | | | Reflow Soldering Temperature | ver 217℃. Fo | ximum durat
or actual app
C J-STD-020[| olication, | | | | | | | | Switching Frequency | Full load, nominal input voltage | | 700 | | kHz | | | | | | MTBF | MIL-HDBK-217F@25℃ | 18595 | | | k hours | | | | | | Mechanical Specific | Mechanical Specifications | | | | | | | | |---------------------|---------------------------|--|--|--|--|--|--|--| | Dimensions | 12.20 x 12.20 x 8.70mm | | | | | | | | | Weight | 2.50g(Typ.) | | | | | | | | | Cooling Method | Free air convection | | | | | | | | ## Typical Characteristic Curves Fig. 1 Vin=5V 20LFM (Natural Convection) Vin=12V 20LFM (Natural Convection) Vin=5V 0LFM Vin=12V 0LFM ## Remote Sense Application ### 1. Remote Sense Connection if not used The line must be kept as short as possible #### Notes: - 1. If the sense function is not used for remote regulation the user must connect the VS+(Sense) to VOUT at the DC-DC converter pins and will compensate for voltage drop across pins only; - 2. The connections between sense lines and their respective power lines must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module. ## 2. Remote Sense Connection used for Compensation The line must be kept as short as possible #### Notes: - 1. Using remote sense with long wires may cause unstable output, please contact technical support if long wires must be used; - 2. We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.5V and to make sure the power supply's output voltage remains within the specified range; - 3. Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical support or factory for further advice of sense operation. ## **PGOOD Application** ### PGOOD recommended circuit | | Table 1 | | | | | | | | | |------|-----------------|--|--|--|--|--|--|--|--| | VIN | 3.3VDC | | | | | | | | | | R1 | 100k Ω | | | | | | | | | | R2 | 25-500 Ω | | | | | | | | | | LED2 | MS-PT2012ZGSC | | | | | | | | | #### Notes: 1. PGOOD is the power good detection pin. When the product is working normally, PGOOD at a high impedance, and LED2 on. when the product is abnormal, which means the voltage on the Vref(FB) pin is not within ±10% of the 0.6V, PGOOD is pulled to low level(0-0.8VDC), and LED2 off; ### 2. PGOOD pin applied voltage is less than or equal to 4V. ## Design Reference ### 1. Typical application | lable 2 Recentification device parameters | | | | | | | | | | | |---|-----------|------------|------------|--------------|-------------|-------------|-------------|----------------|-----------|--| | Output voltage | Ci1 | Ci2 | Ci3 | Rtune | Ctune | Co1 | Co2 | Co3 | Rtrim(kΩ) | | | Vo=0.6V | | | | 150 Ω | 0.012µF/16V | | | | Open | | | Vo=1.2V | | | | 150 Ω | 0.022µF/16V | | | | 20 | | | Vo=1.8V | 470µF/25V | 2*22µF/25V | 0.01µF/25V | 150 Ω | 0.022µF/16V | 0.01µF/6.3V | 3*47µF/6.3V | 4*220u.F/4.2\/ | 10 | | | Vo=2.5V | | | | 180 Ω | 0.022µF/16V | 0.01µF/0.3V | 3 4/µr/0.3V | 4*330µF/6.3V | 6.316 | | | Vo=3.3V | | | | 180 Ω | 0.01µF/16V | | | | 4.444 | | | Vo=5V | | | | 330 Ω | 0.01µF/16V | | | | 2.727 | | #### Note: - 1. Calculation formula of TRIM resistance Rtrim: $Rtrim(k\Omega) = \frac{12}{V_O}$ 0.6 - 2. In order to ensure the stability of the module, the input end and output end shall be externally connected with C1 and C2 respectively, and the capacitor position shall be close to the pin end of the product; - 3. This product does not support hot swap, and the output end cannot be used in parallel. - 2. For additional information please refer to DC-DC converter application notes on www.mornsun-power.com # Dimensions and Recommended Layout Note: Grid 2.54*2.54mm | Pin-Out | | | | | | | | | | |---------|------------|-----|-------|--|--|--|--|--|--| | Pin | Mark | Pin | Mark | | | | | | | | 1 | ON/OFF | 10 | PGOOD | | | | | | | | 2 | VIN | 11 | NC | | | | | | | | 3 | GND | 12 | NC | | | | | | | | 4 | VOUT | 13 | NC | | | | | | | | 5 | VS+(SENSE) | 14 | NC | | | | | | | | 6 | TRIM | 15 | NC | | | | | | | | 7 | GND | 16 | NC | | | | | | | | 8 | NC | 17 | NC | | | | | | | | 9 | NC | | | | | | | | | Note Unit: mm[inch] General tolerances: $\pm 0.25[\pm 0.010]$ The layout of the device is for reference only, please refer to the actual product ## Tape and Reel Info | Device | Package
Type | Pin | MPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Clipped
corner
Quadrant | |-----------|-----------------|-----|-----|--------------------------|--------------------------|------------|------------|------------|------------|-----------|-------------------------------| | K12MT-12A | SMD | 17 | 340 | 330.0 | 24.4 | 12.95 | 12.95 | 9.1 | 20 | 24 | Q2 | ### Notes: - 1. For additional information on Product Packaging please refer to www.mornsun-power.com. Packaging bag number: 58210174; - 2. The maximum capacitive load offered were tested at nominal input voltage and full load; - 3. Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25°C, humidity<75%RH with nominal input voltage, 5VDC output voltage, and rated output load; - 4. All index testing methods in this datasheet are based on our company corporate standards; - 5. We can provide product customization service, please contact our technicians directly for specific information; - 6. Products are related to laws and regulations: see "Features"; - 7. Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units. # MORNSUN Guanazhou Science & Technology Co., Ltd. Address: No. 5, Kehui St. 1, Kehui Development Center, Science Ave., Guangzhou Science City, Huangpu District, Guangzhou, P. R. China Tel: 86-20-38601850 Fax: 86-20-38601272 E-mail: info@mornsun.cn www.mornsun-power.com **MORNSUN®** MORNSUN Guangzhou Science & Technology Co., Ltd.